Establish the Three Theorems: Brain-Like DNs Logically Reason and Optimally Generalize
نویسنده
چکیده
In artificial intelligence (AI) there are two major schools, symbolic and connectionist. Weng 2011 [6] proposed three major properties of the Developmental Network (DN) which bridged the two schools: (1) From any complex FA that demonstrates human knowledge through its sequence of the symbolic inputs-outputs, the DP incrementally develops a corresponding DN through the image codes of the symbolic inputs-outputs of the FA. The DN learning from the FA is incremental, immediate and error-free. (2) After learning the FA, if the DN freezes its learning but runs, it generalizes optimally for infinitely many image inputs and actions based on the embedded inner-product distance, state equivalence, and the principle of maximum likelihood. (3) After learning the FA, if the DN continues to learn and run, it “thinks” optimally in the sense of maximum likelihood based on its past experience. This paper presents the three major theorems and their proofs.
منابع مشابه
Coupled fixed point results for $alpha$-admissible Mizoguchi-Takahashi contractions in $b$-metric spaces with applications
The aim of this paper is to establish some fixed point theorems for $alpha$-admissible Mizoguchi-Takahashi contractive mappings defined on a ${b}$-metric space which generalize the results of Gordji and Ramezani cite{Roshan6}. As a result, we obtain some coupled fixed point theorems which generalize the results of '{C}iri'{c} {et al.} cite{Ciric3}. We also present an application in order to i...
متن کاملStrong and $Delta$-convergence theorems for total asymptotically nonexpansive mappings in CAT(0)
In this work we use the Noor iteration process for total asymptotically nonexpansive mapping to establish the strong and $Delta$-convergence theorems in the framework of CAT(0) spaces. By doing this, some of the results existing in the current literature generalize, unify and extend.
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملFixed point theorems for generalized quasi-contractions in cone $b$-metric spaces over Banach algebras without the assumption of normality with applications
In this paper, we introduce the concept of generalized quasi-contractions in the setting of cone $b$-metric spaces over Banach algebras. By omitting the assumption of normality we establish common fixed point theorems for the generalized quasi-contractions with the spectral radius $r(lambda)$ of the quasi-contractive constant vector $lambda$ satisfying $r(lambda)in [0,frac{1}{s})$ in the set...
متن کاملMulti-valued fixed point theorems in complex valued $b$-metric spaces
The aim of this paper is to establish and prove some results on common fixed point for a pair of multi-valued mappings in complex valued $b$-metric spaces. Our results generalize and extend a few results in the literature.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013